Medium Table of Contents

Table of Contents of: An Introduction of Classical Electrodynamics,
b
y J. W. Keohane and J. P. Foy

Preface to the First Edition
Overview: From Newton to Einstein

Part I: Electricity

Chapter 1    Charge

1.1    Charge Conservation

1.2    Current

1.3    The Continuity Equation

1.4    The Divergence in Curvilinear Coordinates

1.5    Solving The Continuity Equation

Chapter 2    The Electrostatic Force

2.1    Coulomb’s Law

2.2    The Electric Field

2.3    The Electric Field Surrounding Point Charges

Chapter 3    Electrical Potential Energy

3.1    Work and Energy in Mechanical Systems

3.2    The Gradient in Curvilinear Coordinates

3.3    Energy Continuity

3.4    Energy and Work in DC Circuits

3.5    Electrostatic Potential Energy

3.6    The Coulomb Potential

Chapter 4    Gauss’s Law

4.1    Capacitors

4.2    Gauss’s Law

4.3    Classical Models of Dielectrics

Chapter 5    The Equations of Laplace and Poisson

5.1    Equations for the Electrostatic Potential

5.2    Vector Second Derivatives

5.3    Multipole Solutions to Laplace’s Equation

5.4    Separation of Variables

5.5    The Method of Images

5.6    The Method of Relaxation

PART II: Magnetism

Chapter 6    Permanent Magnets

6.1    The Magnetic Field

6.2    Peregrinus’s Principle

6.3    The Field Surrounding Permanent Magnets

Chapter 7    The Vector Potential and the Curl

7.1    Magnetic Flux and the Vector Potential

7.2    The Curl in Curvilinear Coordinates

7.3    The Vector Potential and Permanent Magnets

Chapter 8    Electromagnetism

8.1    Hans Christian Ørsted’s Discovery

8.2    The Law of Laplace

8.3    Ampère’s Law

8.4    Electromagnets

Chapter 9    Faraday’s Law of Induction

9.1    Faraday’s Law

9.2    Inductors

9.3    Inductance in Free Space

9.4    Maxwell’s Equations in Potential Form

Chapter 10    The Electron

10.1    The Hall Effect

10.2    The Lorentz Force

10.3    The Discovery of the Electron

10.4    The Elementary Charge

Chapter 11    Galilean Relativity in Electrodynamics

11.1    Galilean Relativity

11.2    Breakdown of Galilean Relativity

11.3    Motional EMF

11.4    The Law of Biot and Savart

Chapter 12    Superconductors and Plasmas

12.1    Turbulence and the Reynolds Number

12.2    Magnetic Fields in Plasmas

12.3    The Meissner Effect

12.4    Acceleration Theory

12.5    Magnetic Levitation

12.6    Type II Superconductors

Part III: Light

Chapter 13    Transmission Lines

13.1    RLC Circuits

13.2    Continuous Transmission Lines

13.3    Sinusoidally Driven Circuits

Chapter 14    Light in an Optical Medium

14.1    Maxwell’s Field Equations

14.2    Light in a Linear Medium

14.3    The Refraction of Light

14.4    Fresnel’s Theory of Light

14.5    Reflection off of Good Conductors

14.6    The Propagation of Light in a Conductor

Chapter 15    Light in Free Space

15.1    The Wave Equation in Free Space

15.2    The Inverse Square Law

15.3    Conserved Quantities in Plane Waves

15.4    Measuring Light with a Photometer

Chapter 16    Sources of Electromagnetic Radiation

16.1    Spherical Waves

16.2    Hertzian Dipole Radiation

16.3    Antenna Theory

16.4    Radiation from Point Charges

Chapter 17    Special Relativity

17.1    Relativistic Kinematics

17.2    Relativistic Electrodynamics

17.3    The Electromagnetic Field Tensor

17.4    Radiation from Relativistic Point Charges

Chapter 18    The Photon

18.1    Einstein and the Photoelectric Effect

18.2    Thermal Radiation and the Hydrogen Atom

18.3    Does the Photon Exist?

18.4    Matter Waves

18.5    The New Electrodynamics

Appendix A Faraday on Ray Vibrations

Appendix B Kelvin’s Preface to Hertz’s Treatise

Appendix C Henri Poincaré’s 1904 Lecture

Appendix D Electrodynamics in Gaussian Units

Appendix E Vector Calculus

Appendix F Curvilinear Coordinates

Appendix_G_Historical Timeline

Appendix H Biographical Index